Net Deals Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Marshallian demand function - Wikipedia

    en.wikipedia.org/wiki/Marshallian_demand_function

    Marshallian demand function. In microeconomics, a consumer's Marshallian demand function (named after Alfred Marshall) is the quantity they demand of a particular good as a function of its price, their income, and the prices of other goods, a more technical exposition of the standard demand function. It is a solution to the utility maximization ...

  3. Lambert's problem - Wikipedia

    en.wikipedia.org/wiki/Lambert's_problem

    Lambert's problem. In celestial mechanics, Lambert's problem is concerned with the determination of an orbit from two position vectors and the time of flight, posed in the 18th century by Johann Heinrich Lambert and formally solved with mathematical proof by Joseph-Louis Lagrange. It has important applications in the areas of rendezvous ...

  4. Inverse demand function - Wikipedia

    en.wikipedia.org/wiki/Inverse_demand_function

    The inverse demand function can be used to derive the total and marginal revenue functions. Total revenue equals price, P, times quantity, Q, or TR = P×Q. Multiply the inverse demand function by Q to derive the total revenue function: TR = (120 - .5Q) × Q = 120Q - 0.5Q². The marginal revenue function is the first derivative of the total ...

  5. Minimum-cost flow problem - Wikipedia

    en.wikipedia.org/wiki/Minimum-cost_flow_problem

    Let w: E → R be a weight function on the edges of E. The minimum weight bipartite matching problem or assignment problem is to find a perfect matching M ⊆ E whose total weight is minimized. The idea is to reduce this problem to a network flow problem. Let G′ = (V′ = A ∪ B, E′ = E). Assign the capacity of all the edges in E′ to 1.

  6. Optimal control - Wikipedia

    en.wikipedia.org/wiki/Optimal_control

    Optimal control theory is a branch of control theory that deals with finding a control for a dynamical system over a period of time such that an objective function is optimized. [1] It has numerous applications in science, engineering and operations research. For example, the dynamical system might be a spacecraft with controls corresponding to ...

  7. Romberg's method - Wikipedia

    en.wikipedia.org/wiki/Romberg's_method

    Romberg's method. In numerical analysis, Romberg's method [1] is used to estimate the definite integral by applying Richardson extrapolation [2] repeatedly on the trapezium rule or the rectangle rule (midpoint rule). The estimates generate a triangular array. Romberg's method is a Newton–Cotes formula – it evaluates the integrand at equally ...

  8. Dirichlet problem - Wikipedia

    en.wikipedia.org/wiki/Dirichlet_problem

    For example, the solution to the Dirichlet problem for the unit disk in R 2 is given by the Poisson integral formula. If f {\displaystyle f} is a continuous function on the boundary ∂ D {\displaystyle \partial D} of the open unit disk D {\displaystyle D} , then the solution to the Dirichlet problem is u ( z ) {\displaystyle u(z)} given by

  9. Solutions of the Einstein field equations - Wikipedia

    en.wikipedia.org/wiki/Solutions_of_the_Einstein...

    The solutions that are not exact are called non-exact solutions. Such solutions mainly arise due to the difficulty of solving the EFE in closed form and often take the form of approximations to ideal systems. Many non-exact solutions may be devoid of physical content, but serve as useful counterexamples to theoretical conjectures.