Net Deals Web Search

Search results

  1. Results From The WOW.Com Content Network
  2. Euclid's theorem - Wikipedia

    en.wikipedia.org/wiki/Euclid's_theorem

    If q is not prime, then some prime factor p divides q. If this factor p were in our list, then it would divide P (since P is the product of every number in the list); but p also divides P + 1 = q, as just stated. If p divides P and also q, then p must also divide the difference [3] of the two numbers, which is (P + 1) − P or just 1. Since no ...

  3. Euclidean algorithm - Wikipedia

    en.wikipedia.org/wiki/Euclidean_algorithm

    Since each prime p divides L by assumption, it must also divide one of the q factors; since each q is prime as well, it must be that p = q. Iteratively dividing by the p factors shows that each p has an equal counterpart q; the two prime factorizations are identical except for their order. The unique factorization of numbers into primes has ...

  4. Euclid's lemma - Wikipedia

    en.wikipedia.org/wiki/Euclid's_lemma

    Euclid's lemma. In algebra and number theory, Euclid's lemma is a lemma that captures a fundamental property of prime numbers: [ note 1] Euclid's lemma — If a prime p divides the product ab of two integers a and b, then p must divide at least one of those integers a or b . For example, if p = 19, a = 133, b = 143, then ab = 133 × 143 = 19019 ...

  5. Coprime integers - Wikipedia

    en.wikipedia.org/wiki/Coprime_integers

    Coprime integers. In number theory, two integers a and b are coprime, relatively prime or mutually prime if the only positive integer that is a divisor of both of them is 1. [ 1] Consequently, any prime number that divides a does not divide b, and vice versa. This is equivalent to their greatest common divisor (GCD) being 1. [ 2]

  6. Fermat number - Wikipedia

    en.wikipedia.org/wiki/Fermat_number

    Yves Gallot's proth.exe has been used to find factors of large Fermat numbers. Édouard Lucas, improving Euler's above-mentioned result, proved in 1878 that every factor of the Fermat number , with n at least 2, is of the form + + (see Proth number), where k is a positive integer. By itself, this makes it easy to prove the primality of the ...

  7. Wilson's theorem - Wikipedia

    en.wikipedia.org/wiki/Wilson's_theorem

    Wilson's theorem. In algebra and number theory, Wilson's theorem states that a natural number n > 1 is a prime number if and only if the product of all the positive integers less than n is one less than a multiple of n. That is (using the notations of modular arithmetic ), the factorial satisfies. exactly when n is a prime number.

  8. Euclidean division - Wikipedia

    en.wikipedia.org/wiki/Euclidean_division

    17 is divided into 3 groups of 5, with 2 as leftover. Here, the dividend is 17, the divisor is 3, the quotient is 5, and the remainder is 2 (which is strictly smaller than the divisor 3), or more symbolically, 17 = (3 × 5) + 2. In arithmetic, Euclidean division – or division with remainder – is the process of dividing one integer (the ...

  9. Factor analysis - Wikipedia

    en.wikipedia.org/wiki/Factor_analysis

    Factor analysis can be only as good as the data allows. In psychology, where researchers often have to rely on less valid and reliable measures such as self-reports, this can be problematic. Interpreting factor analysis is based on using a "heuristic", which is a solution that is "convenient even if not absolutely true". [49]